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ABSTRACT 

The second order accuracy difference scheme for the approximate solution of the abstract 
reverse parabolic equation in a Hilbert space with the nonlocal boundary condition is 
considered. The stability estimates, almost coercivity, and coercivity estimates for the 

solution of this difference scheme are established. New coercivity inequalities for the 
solution of multipoint nonlocal boundary value difference equations of reverse 
parabolic type are obtained. 
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1. INTRODUCTION 

The importance of the coercivity inequalities (well-posedness) 
in the study of boundary value problems for partial differential 

equations is well known (see Ladyzhenskaya et al. (1967); 

Ladyzhenskaya et al. (1968) and Vishik et al. (1959)). Many 
researchers have been extensively studied the coercivity inequalities for 

nonlocal boundary value problems for parabolic partial differential 

equations (see the references therein). 

 
In Ashyralyev et al. (2006), the multipoint nonlocal boundary value 

problem 
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in a Hilbert space H  with self-adjoint positive definite operator A  is 
considered under assumption 
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We established the well-posedness of multipoint nonlocal 

boundary value problem (1). New coercivity estimates in various Hölder 

norms for the solutions of nonlocal boundary value problems for 
parabolic equations are obtained. 

 

In Ashyralyev et al. (2009), we studied the Rothe difference 
scheme for the approximate solution of abstract parabolic equation (1). 

We established the stability estimates, almost coercivity and coercivity 

estimates for the solution of this difference scheme. In applications, we 
obtained new coercivity inequalities for the solution of multipoint 

nonlocal boundary value difference equations of parabolic type. 

 

Throughout the present paper, we let M  denote positive 
constants, which may differ time to time and is not a subject of 

precision. However, ( , , )M α β … is used to focus on the fact that the 

constant depends only on , ,α β …   

 

Let [0,1] { , 1, , 1}kt k k N Nτ τ τ= = = =  denote the uniform grid 

space with step size 0,τ >  where N  is a fixed positive integer. Let 

( ) ([0,1] , )F H F Hτ τ=  be the linear space of grid functions 1{ }N
k

τϕ ϕ=  

with values in the Hilbert space .H  Denote the Banach space of 

bounded grid functions by ( ) ([0,1] , )C H C Hτ τ=  with norm 
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For [0,1],α ∈  let ( ) ([0,1] ),C H C Hα α
τ=  and 1 1( ) ([0,1] )C H C Hα α
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In the present paper, the second order of accuracy difference scheme 
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for approximately solving problem (1) studied. The well-posedness of 

multipoint nonlocal boundary value problems (3) in spaces 1 ( )C Hα  and 

( )C Hα  is established. Moreover, by applying these abstract results, we 

obtain new coercivity estimates in various Hölder norms for the solutions of 
nonlocal boundary value problems for parabolic equations. 

 

 

2. WELL-POSEDNESS 

 Throughout the paper, H is a Hilbert space and A  is a positive 

definite self-adjoint operator with A Iδ≥  for some 0,δ >  where I  is the 

identity operator. Moreover, let ( ) 2B I Aτ= +  and 

( )
1

2
( ) 2 .D I A Aτ τ

−
= + +  

 

Lemma 1. (Ashyralyev and Sobolevskii (1994)). The following estimates 
hold: 
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H H
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( ) 2 1,
H HH H

I A DB BDBατ
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+ ≤ ≤                         (8) 

( ) , 1, 0 1,m
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≤ ≥ ≤ ≤                         (9) 

( ) ( ) ( ) ,m r m

H H
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for some , 0M δ >  independent of ,τ where τ  is a positive small number. 

 

Lemma 2. If (2) holds, then the operator ( ) [ ]

1

k
p N

k kk
I I d A D

θ τα −

=
− +∑   

has an inverse Tτ  and the following estimate is satisfied 

 

( , ).pH H
T Mτ δ θ

→
≤                                       (11) 

 

Now, we obtain the formula for the solution of problem (12). Clearly, the 

second order of a accuracy difference scheme 
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has a solution and the following formula holds 
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N k j k
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By formula (13), the nonlocal boundary condition and Lemma 2, we obtain 
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Thus, difference equation (12) is uniquely solvable and solutions satisfy (13) 

and (14). 
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Difference problem (3) is said to be stable in ( ),F Hτ  if the stability estimate 

holds  

1 ( ) ( )
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We say problem (3) is well-posed in ( ),F Hτ  if for every ( )F Hτ
τϕ ∈  

problem (3) is uniquely solvable and also the following coercivity estimate 
is valid 
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where .H H′ ⊂  

 

Theorem 3. Let assumption (2) hold and .Hϕ ∈  Then, the solution of 

difference scheme (12) satisfy the following stability estimate 
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Proof. By formula (13), estimate (6) for 0,α = and 1,Nτ =  we get for 

0, 1k N= −  

( )
.k NH H C H

u u
τ

τψ≤ +  

 

Estimate (15) follows from (14), assumption (2), estimates (4), (6) for 

0,α =  (11) and 1.Nτ =  This is the end of Theorem 3. 

 

Theorem 4. Let ( ).D Aϕ ∈  Then, the solution of difference problem (12) 

satisfies the following almost coercivity inequality  
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Proof. From formula (13), estimate (4), (6) for 0α =  it follows for 1,k N=  
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By using the estimates (6) for 0α = , (10) for 1, 0,γ β= =  we get  
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It follows from formula (14), assumption (2), estimates (4), (6) for 0,α =  

(11) and 1Nτ =  that  

 

( )

1
( , ) min ln ,1 ln .N p H H HH C H

Au M A A
τ

τ

δ θ ψ ϕ
τ →

  
≤ + +  

  
 (18) 

 

Hence, combining estimates (17), (18), we get 
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Estimate (16) follows from difference equation (12), the triangle inequality 

and estimate (19). This concludes the proof of Theorem 4. 
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Theorem 5. Assume that (2) holds and ( ).D Aϕ ∈  Then, the solution of 

difference problem scheme (12) satisfy the following stability estimate 
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Proof. Using formula (13) and identity 

 

,ADB I Dτ = −                                           (21) 

 

we get for 1,k N=  that 
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Hence, it follows from estimates (6) for 0,1α =  (9) for 1β =  and the 

definition of 1 ( )C Hα -norm that 
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Next, let us estimate .N H
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Thus, from estimates (4), (7) for 0,α = (9) for 1,β =  (11), the definition of 

1 ( )C Hα -norm and assumption (2) it follows that 
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By estimates (23), (24), we get 
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We now estimate 
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Let 1 2 .N k r− + >  It follows from formula (13) that  
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Let us start with estimate 1( ).P k  By using estimates (4), (10) for 0,β =  (24) 
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From estimates (6) for 0,α = (9) for 0,β =  the definition of  1 ( )C Hα -norm 

and the fact 1 2 ,N k r− + >  it follows that 
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Using estimates (6) for 0,α = (10) for 1,β = 1,γ = the definition of 1 ( )C Hα -

norm, the facts 1 2N k r− + >  and 2 ,j k r− ≥  we get 
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Estimates (6) for 0,α = (9) for 1,β = the definition of 1 ( )C Hα -norm and the 

facts 1 2N k r− + >  result that  
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By estimate (10) for 0,β = ,γ α=  and the fact 1 2N k r− + > ,  we obtain 
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Combining estimates (28)-(33), for 1 2N k r− + >  we get 
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From estimates (26) and (34) it follows that  
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Thus, combining estimates (25), (35), we obtain 
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Therefore, we obtain estimate (20) by using difference equation (12), estimate 

(36) and the triangle inequality. This is the end of Theorem5. 
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Proof. First, we establish the estimate for { }1 1 ( )
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arguments given in the proof of estimate (25), we get 
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Thus, using the spectral theorem for ,A the definition of ,Hα
′  estimates (6) 
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2 2 ( )

4
( ) ( ) ( ) .

H H
Q k Q k r r

α

αυ τ
α ′

− + ≤                         (42) 

 

 

 



Allaberen Ashyralyev, Ayfer Dural & Yasar Sözen 

 

102 Malaysian Journal of Mathematical Sciences 
 

Hence, it follows from (42) that 
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By estimate (6) for 0α =  and the definition of ( )C Hα -norm, we obtain 
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Estimate (6) for 0α =  and the definition of Cα -norm result that for all k  

 

4
( ) ( )

( ) (( ) ) .
H C H C H

Q k N k α α

α τ ττ ψ ψ≤ − ≤                   (51) 

 

So, estimate (51) gives us 

 

4 ( ) ( )
.

C H C H
Q α

τ

τ
ψ≤                                     (52) 

 

It follows from estimates (6) for 0,α = (10) for 0,β =  1,γ =  and definition 

of Cα -norm that for all 1 k k r N≤ < + ≤  

 

4 4
( )

( ) ( ) ( 1)( ) .
H C H

Q k r Q k M r α

α ττ ψ+ − ≤ +                  (53) 

 

Thus, using estimate (53), we obtain 

 

4 4

1
1 ( )

( ) ( )
max .

( )

H

k k r N C H

Q k r Q k
M

r
α

τ

α
ψ

τ≤ < + ≤

+ −
≤                    (54) 

 

From estimates (52), (54) it result that 
 

4 1( ) ( )
.

C H C H
Q M α

τ
α ψ≤                                  (55) 
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Combining estimates (40), (43), (50) and (55), we get 
 

{ }1 1

( )

( )
.

(1 )

N N
N

k

H C H

C H

Au

ABu M
α

α

α

τψϕ

α α α
−

′
 +
 

≤ + − 
 

             (56) 

 
From the triangle inequality, estimate (56) and difference equation (12) it 

follows 

1
1 1

( )

( )1
{ ( )} .

(1 )

N

k k N N
H

C H

HC
u u M Au

α

α
α

τψ

τ ϕ
α α α

−
− ′

 
 

− ≤ + + 
− 

 

        (57) 

 

Let us now establish the estimate for 1
1 1 ( )

{ ( )} .N
k k C H

u u
α

τ −
− ′

−  Using 

difference equation (12) and formula (13), we obtain for all k  

 
1 1 1

1( ) ( ) ( )N k N k
k k N N k Nu u D BAu Dτ ψ ψ ψ− − + − +

−− = + + −  

1
1 2 3( ) ( ) ( ) ( ).

N
j k

j k

j k

B AD S k S k S kτ ψ ψ− +

=

− − = + +∑  

 

It follows from estimates (6) for 0,α = the definition of Hα
′ -norm that  

 

1( ) .N NH H
S k BAu

α α
ψ

′ ′
≤ +                                 (58) 

 

By estimates (6) for 0,α = (9) for ,β α=  and definition of Hα
′ -norm, we 

get 

2
( )

( ) .
H C H

S k M α
α

τψ
′

≤                                     (59) 

 

Estimates (6) for 0,α = (9) for 1,β =  and definition of ( )C Hα -norm result 

 

3
( )

1
( ) .

H C H
S k α

τψ
α

≤                                    (60) 
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Using formula (37) and the definition of ( )C Hα -norm, we get 

 

3 2 ( )

( )
( ) .

(1 )H C H

M
A S k α

α τδ
ψ

α α
≤

−
                           (61) 

 

From estimates (60), (61) it follows that 
 

3 2 ( )

( )
( ) .

(1 )H C H

M
S k α

α

τδ
ψ

α α′
≤

−
                            (62) 

 

Combining estimates (58)-(62), we obtain 
 

1
1 1 2

( )

( )
{ ( )} .

(1 )

N

k k N N

C H

HC H
u u M BAu

α

α α

τψ

τ ψ
α α

−
− ′′

 
 

− ≤ + + 
− 

 

     (63) 

Now, let us establish estimate .N N H
Au

α
ϕ ′+  From formula (14) it follows 

that 

1

1 1

( ) ( )k

k

k

p N
j

N N k k j

k j

Au T I d A AD Bτψ α τ ψ ψ−
+

= = +


+ = − + −


∑ ∑ ℓ

ℓ

ℓ

 

1 1

1 1

( ) ( )k

k k

p p
N

k k N N k

k k

I d A D Aα ψ ψ ψ α ψ ϕ−
+ +

= =


+ + − + − + 


∑ ∑ℓ

ℓ ℓ

1 2 3.U U U= + +  

 

Estimates (8), (10) for 1,β = (11), formula (37), assumption (2) and then 

definition ( )C Hα -norm give us 

 

1 22 ( ) ( )

( , )
, ( , ) ,

(1 )

p

pH HC H C H

M
U U Mα α

α α

τ τ
δ θ

ψ δ θ ψ
α α′ ′

≤ ≤
−

     (64) 

 

3 1

1

( , ) .
k

p

p N k

k
H

H

U M A
α

α

δ θ ψ α ψ ϕ+

=
′

′

≤ − +∑ ℓ
                    (65) 

 

Thus, estimates (63)-(65) concludes the proof of Theorem 6.  
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3. AN APPLICATION 

In this section, we present an application of Theorem 5 and Theorem 

6. Let us consider the nonlocal boundary value problem 

 

1

1 2

( ( ) ) ( , ), 0 1, 0 1,

(1, ) ( , ) ( ), 0 1,

0 1,

( ,0) ( ,1), ( ,0) ( ,1), 0 1

t x x

p

m m

m

p

x x

u a x u u f t x t x

u x u x x x

u t u t u t u t t

δ

α θ ϕ

θ θ θ

=

+ − = < < < <

 = + ≤ ≤

 ≤ < < < <
 = = ≤ ≤

∑
⋯

                  (66) 

 

under assumption (2), 0, ( ) 0 ( (0,1)),a x a xδ > ≥ > ∈ ( ) ( [0,1])x xϕ ∈  and 

( , ) ( , [0,1])f t x t x∈  are smooth functions. 

 

Problem (66) is discretized in two steps. Let us first introduce the grid space  

 

[0,1] { : , , 1}.h n nx x x nh n M Mh= = = ≤ ≤ =  

 

Let 2 2 ([0,1] )h hL L=  be the Hilbert space of the grid functions 

1
1( ) { ( )}h M

nx xϕ ϕ −=  defined on [0,1] ,h  equipped with the norm 

 
1 2

2

2 [0,1]

( ) .

h

h

h x
L

x hϕ ϕ
∈

 
 
 
 

= ∑  

 

To the differential operator A  generated by problem (66) let us associate the 

difference operator  x
hA  by the formula 

1

, 1( ) { ( ( ) ) }
x h M

h x x n nA x a xϕ ϕ δϕ −= − +                             (67) 

 

acting in the space of grid functions 1
1( ) { }h M

nxϕ ϕ −=  satisfying the 

conditions 0 1 0 1, .M M Mϕ ϕ ϕ ϕ ϕ ϕ −= − = −  It well-known that x
hA  is a self-

adjoint positive definite operator in 2 .hL  Let .
2

x

hx
h

A
B I

τ
= +  With the help of  

x
hA , we arrive at the nonlocal boundary value problem 

 



On Well-Posedness of the Second Order Accuracy Difference Scheme for  

Reverse Parabolic Equations 

 

 Malaysian Journal of Mathematical Sciences 107 
 

1

( , )
( , ) ( , ), (0,1), [0,1] ,

(1, ) ( , ) ( ), [0,1] .

h
x x h x h

h h h h

ph h h
m m hm

du t x
A B u t x B f t x t x

dt

u x u x x xα θ ϕ
=


− = ∈ ∈


 = + ∈ ∑

        (68) 

 

In the second step, we replace (68) with difference scheme (3) 

 

2

1
1 1

1

1

,

( ( ) ( )) ( ) ( ),

( ) ( , ), , 1, , 1, [0,1] ,

( ) {( ) ( ) } ( ), [0,1] ,

1, .

m m

m m

h h x x h
k k h h k k

x h

k h k hk

p
h x h x h
N m m h m h h

m

m m m

u x u x A B u x x

x B f t x t k k N N x

u x I d A u x d B x x

d m p

τ

θ θ
τ

τ τ

τ ψ

ψ τ τ

α ψ ϕ

θ

−
− −

−

+

=

 − − =


= = = = ∈


 = + + + ∈



    = − = =       

∑ ℓ ℓ

ℓ

   (69) 

 

Theorem 7. Let τ and h  be sufficiently small numbers. Then, the solutions 

of difference scheme (69) satisfy the following coercivity stability estimate 

 

2
2 21 1

1
1 1 1 1

, ,([0,1] ) ([0,1] )
{ ( )} { }

h h

h h N h N
k k kC L C W

u u u
α α

τ τ

τ −
− −− +  

2 2
21 2

1
([0,1] , )

1
( , ) { } .

(1 ) hh

h N h
p k WC W

M α

τ

δ θ ψ ϕ
α α

 
≤ + 

− 
 

 

Theorem 8. Let 11
( ) ( ) ( ).

k

px h h h

h N kk
A x x xϕ ψ α ψ +=

= ∑ ℓ
 Then, for solutions of 

the problem (69), we have the following stability inequalities 
 

2
2 2

1
1 1 1 1

, ,([0,1] ) ([0,1] )
{ ( )} { }

h h

h h N h N
k k kC L C W

u u u
α α

τ τ

τ −
− −− +  

12 ( )

( , )
{ } .

(1 )

p h N
k

C H

M
α

δ θ
ψ

α α
≤

−
 

 
The proof of Theorem 7, Theorem 8 is based on Theorem 5, Theorem 6 and 

the symmetry properties of the difference operator x
hA  defined by formula 

(67). 
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